3^2/3=9x^2/3

Simple and best practice solution for 3^2/3=9x^2/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^2/3=9x^2/3 equation:



3^2/3=9x^2/3
We move all terms to the left:
3^2/3-(9x^2/3)=0
We add all the numbers together, and all the variables
-(9x^2/3)+1=0
We get rid of parentheses
-9x^2/3+1=0
We multiply all the terms by the denominator
-9x^2+1*3=0
We add all the numbers together, and all the variables
-9x^2+3=0
a = -9; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-9)·3
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*-9}=\frac{0-6\sqrt{3}}{-18} =-\frac{6\sqrt{3}}{-18} =-\frac{\sqrt{3}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*-9}=\frac{0+6\sqrt{3}}{-18} =\frac{6\sqrt{3}}{-18} =\frac{\sqrt{3}}{-3} $

See similar equations:

| 9x-4=1.5x-4 | | 2^(2x)*2^(x-2)=12 | | 3t+1/2=4 | | 3t+1=4 | | 7x-48=+15-2x | | 24=3.14xR | | 3k-1=10÷2 | | 5+3k=11 | | 40x-40=160 | | 40x-20=160 | | 40x-12=160 | | 40x-12=120 | | 40x-20=110 | | 40x-7=120 | | 40x-8=120 | | 40x-10=120 | | 40x-12=122 | | 43x-24=172 | | 43x-18=172 | | 2x=42÷15 | | 43x-84=172 | | 43x-92=176 | | 5(x+3)=2x-20 | | t÷4-2=15 | | 43x-96=175 | | 43x+96=175 | | 43x+96=175-12 | | a÷6+6=15 | | 4/x=32/40 | | 43x+74=198-12 | | a÷6=6+15 | | 5x+15=-21+2x |

Equations solver categories